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We involve a certain propositional logic based on an ortholattice. We characterize the
implication reduct of such a logic and show that its algebraic counterpart is the so-called
orthosemilattice. Properties of congruences and congruence kernels of these algebras
are described.
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By an ortholattice is meant an algebra L = (L; ∨,∧,⊥ , 0, 1) of type
(2, 2, 1, 0, 0) such that (L; ∨,∧) is a lattice with the least element 0 and the
greatest one 1 and ⊥ denotes a complementation which is involutory, i.e. x⊥⊥ = x

for each x ∈ L and x ≤ y in L implies y⊥ ≤ x⊥ (which is equivalent to De
Morgan laws: (x ∨ y)⊥ = x⊥ ∧ y⊥ and (x ∧ y)⊥ = x⊥ ∨ y⊥). Of course, every
Boolean algebra and every orthomodular lattice are ortholattices. However, a
Boolean algebra serves as algebraic counterpart of classical propositional logic
where ∨ or ∧ stand for disjunction or conjuction, respectively, and the comple-
ment x ′ of x as a negation. Then the logical connective implication can be derived
by

x ⇒ y = x ′ ∨ y.

On the other hand, an orthomodular lattice can analogously serve as an
algebraic counterpart of the so-called logic of quantum mechanics, shortly the so-
called orthomodular logic, see (Chajda et al., 2001). In such a logic, the connective
implication is expressed by means of ∨,∧ and complementation as follows:

x ⇒ y = (x⊥ ∧ y⊥) ∨ y.
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Fig. 1.

Unfortunately, in ortholattices the analogy does not work. If we consider an
ortholattice visualized in Fig. 1, then for x ⇒ y := x⊥ ∨ y we have

a ⇒ b = 1 and b ⇒ a = 1

which contradicts to the accepted logical rules.
Hence, we improve the object of our considerations as follows:

Definition 1. An ortholattice L = (L; ∨,∧,⊥ , 0, 1) is called a strong ortholattice
if for each p ∈ L the interval [p, 1] is also an ortholattice with respect to induced
order, i.e. ([p, 1]; ∨,∧, ⊥

p , p, 1) is an ortholattice where for a, b ∈ [p, 1] the oper-
ations a ∨ b, a ∧ b coincide with those of L and there exists an orthocomplement
a⊥

p in [p, 1] for each a ∈ [p, 1].

Example. A strong ortholattice which is neither modular (since {0, e, d, b⊥, 1} is a
sublattice isomorphic to N5) nor orthomodular (since a ≤ c⊥ but a ∨ (a⊥ ∧ c⊥) =
a 	= c⊥) is depicted in Fig. 2.

For our purposes, a weaker structure is convenient, i.e. we will consider
only order-filters in a strong ortholattice which will be called orthosemilattice,
precisely:

Fig. 2.
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Definition 2. Let S = (S,∨) be a semilattice with the greatest element 1
where for each p ∈ S the interval [p, 1] is an ortholattice with respect to in-
duced order; denote by a⊥

p the orthocomplement of a ∈ [p, 1] in [p, 1] and for
([p, 1]; ∨,∧, ⊥

p , p, 1) we have
a ∧ b = (a⊥

p ∨ b⊥
p )⊥p ,

where ∨ coincides with that of S. Then S is called an orthosemilattice.

As it was already mentioned, each order-filter in a strong ortholattice is
an orthosemilattice. Every orthosemilattice is a set-theoretical union of strong
ortholattices where the operations ∨ and ∧ coincide on the overlapping parts.

Theorem 1. Let S = (S; ∨) be an orthosemilattice. Define the operation “•” as
follows:

x • y := (x ∨ y)⊥y .

Then

(a) a • 1 = 1, a • a = 1, 1 • a = a

(b) (a • b) • b = (b • a) • a

(b) (((a • b) • b) • p) • (a • p) = 1
(d) (((a • p) • p) • p) • ((a • p) • p) = (a • p) • p.

Proof:

(a) Clearly a • 1 = (a ∨ 1)⊥1 = 1
a • a = (a ∨ a)⊥a = a⊥

a = 1
1 • a = (1 ∨ a)⊥a = 1⊥

a = a.

(b) Since a ∨ b ≥ b then a ∨ b ∈ [b, 1], also (a ∨ b)⊥b ∈ [b, 1] and hence
(a ∨ b)⊥b ≥ b. Then (a • b) • b = ((a ∨ b)⊥b ∨ b)⊥b = ((a ∨ b)⊥b )⊥b = a ∨
b. Analogously, (b • a) • a = b ∨ a = a ∨ b = (a • b) • b.

(c) Since a ∨ b = (a • b) • b, (c) can be rewritten as ((a ∨ b) • p) • (a •
p) = 1. It is easily seen that (c) is equivalent to

a ≤ b ⇒ b • p ≤ a • p.

Suppose a ≤ b. Then p ≤ a ∨ p ≤ b ∨ p. Since the orthocomple-
mentation in [p, 1] converses the order, we obtain a • p = (a ∨ p)⊥p ≥
(b ∨ p)⊥p = b • p.

(d) Similarly, (d) is equivalent to the condition
(d ′) p ≤ a ⇒ ((a • p) • a) • a = 1.

Indeed, let (d) hold and p ≤ a. Then (a • p) • a = [(a ∨ p) • p] • (a ∨ p) =
(((a • p) • p) • p) • ((a • p) • p) = a, whence

((a • p) • a) • a = 1.
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Conversely, assume that p ≤ a and ((a • p) • a) • a = 1. Then (a • p) • a ≤ a

and since a ≤ (a • p) • a, we have (a • p) • a = a. Finally, replacing a by a ∨ p

in the previous equality, we obtain

[(a ∨ p) • p] • (a ∨ p) = a ∨ p,

hence (d) holds.
If p ≤ a, i.e. a ∈ [p, 1], then ((a • p) • a) • a = (a • p) ∨ a = (a ∨ p)⊥p ∨

a = a⊥
p ∨ a = 1. �

Definition 3. An algebra A = (A; •, 1) of type (2, 0) satisfying the identities
(a),(b),(c),(d) of Theorem 1 will be called an implication orthoalgebra.

Remark. The name implication orthoalgebra is motivated by the fact that the
operation “•” can be considered as the logical connective implication. For the
sake of brevity, we shall write x • y instead of x ⇒ y, analogously as in Abbott
(1967) where this operation stands for the implication in a classical logic.

Theorem 2. Let A = (A; •, 1) be an implication orthoalgebra. For x, y ∈ A

define

x ≤ y iff x • y = 1

x ∨ y := (x • y) • y

and for p ∈ A and a, b ∈ [p, 1] define

a ∧ b := (((a • p) • (b • p)) • (b • p)) • p.

Then ≤ is an order on A with the greatest element 1, and x ∨ y = sup(x, y) with
respect to ≤, i.e. (A; ∨) is a ∨-semilattice with the greatest element 1. For each
p ∈ A the interval [p, 1] is a lattice with respect to ∨,∧ as defined above and
a • p is an orthocomplement of a ∈ [p, 1]. Hence, (A; ∨) is an orthosemilattice.

Proof: By (a), ≤ is reflexive. Suppose a ≤ b and b ≤ a. Then a • b = 1 and
b • a = 1 and we derive by (a) and (b) also a = 1 • a = (b • a) • a = (a • b) •
b = 1 • b = b, thus ≤ is antisymmetric.

Let a ≤ b and b ≤ c. By (c) we have 1 = b • c ≤ a • c which yields a • c =
1, i.e. a ≤ c. Thus ≤ is also transitive, i.e. it is an order on A.

Since a • 1 = 1 by (a), 1 is the greatest element w.r.t. ≤ .

Put now a ∨ b := (a • b) • b. If a ≤ b then a • b = 1 and hence a ∨ b = (a • b) •
b = 1 • b = b, i.e.

(∗) a ≤ b ⇒ a ∨ b = b.

Further, a ∨ b = (a • b) • b ≥ 1 • b = b (by (c)) and a ∨ b = b ∨ a = (b • a) •
a ≥ 1 • a = a thus a ≤ a ∨ b, b ≤ a ∨ b. Suppose a ≤ c, b ≤ c. Then, by (c),
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a ∨ b = (a • b) • b ≤ (c • b) • b = c ∨ b. By (∗) and (b) we have c ∨ b = c, i.e.
a ∨ b ≤ c. We have shown that a ∨ b = sup(a, b) with respect to ≤ .

Let p ∈ A and a, b ∈ [p, 1]. By (c) we obtain

a ≤ b implies b • p ≤ a • p

a = a ∨ p = (a • p) • p

thus the mapping a �−→ a • p for a ∈ [p, 1] is an involutory antiautomorphism
of ([p, 1],≤) which implies De Morgan laws

(x ∨ y) • p = (x • p) ∧ (y • p), (x ∧ y) • p = (x • p) ∨ (y • p)

where x ∧ y := ((x • p) ∨ (y • p)) • p.

This implies that x ∧ y = inf (x, y) in [p, 1] w.r.t ≤ (restricted to the interval
[p, 1]).

Moreover, for a ∈ [p, 1] denote by a⊥
p the element a • p. Then p ≤ a implies

a = a ∨ p = (a • p) • p = (a⊥
p )⊥p

and, by (d ′),

a⊥
p ∨ a = ((a • p) • a) • a = 1.

Further,

a ∧ a⊥
p = (a⊥

p ∨ (a⊥
p )⊥p )⊥p = (a⊥

p ∨ a)⊥p = (a ∨ a⊥
p )⊥p = 1⊥

p = 1 • p = p.

Hence, we have shown that a⊥
p is an orthocomplement of a ∈ [p, 1] in the

interval [p, 1]. �

Corollary. Let A = (A; •, 1) be an implication orthoalgebra. Then A is a set-
theoretical union of strong ortholattices with the common greatest element 1 where
the lattice operations coincide on the overlapping parts.

In what follows, we give a certain description of congruences on implication
orthoalgebras. Consider a congruence � on an implication orthoalgebra A =
(A; •, 1). The class [1]� will be called the kernel of �. Hence, each � ∈ Con(A)
determines its kernel. However, also vice versa, each congruence on A is uniquely
determined by its kernel:

Theorem 3. Let A = (A; •, 1) be an implication orthoalgebra and �,� ∈
Con(A). If [1]� = [1]� then � = �.

Proof: Assume [1]� = [1]� for �,� ∈ Con(A) and let (a, b) ∈ �. Then
clearly

〈a • b, 1〉 = 〈a • b, a • a〉 ∈ �
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〈b • a, 1〉 = 〈b • a, b • b〉 ∈ �

thus a • b, b • a ∈ [1]� = [1]� and hence

〈a • b, 1〉 ∈ � and 〈b • a, 1〉 ∈ �.

Using Theorem 1(a),(b) we obtain

〈(a • b) • b, b〉 = 〈(a • b) • b, 1 • b〉 ∈ �,

〈(b • a) • a, a〉 = 〈(b • a) • a, 1 • a〉 ∈ �.

Hence

b � (a • b) • b = (b • a) • a �a

giving (a, b) ∈ �, i.e. � ⊆ �. Analogously we can show � ⊆ �, thus
� = �. �

To describe a congruence � on an implication orthoalgebra A, it is enough
to characterize its kernel [1]�.

Theorem 4. Let A = (A; •, 1) be an implication orthoalgebra and D ⊆ A such
that 1 ∈ D. The following conditions are equivalent:

(1) D is a kernel of some � ∈ Con(A);
(2) D satisfies the following conditions:

(D1) if x ∈ D and y • z ∈ D then (x • y) • z ∈ D

(D2) if x • y ∈ D and y • x ∈ D then

(x • z) • (y • z) ∈ D and (z • x) • (z • y) ∈ D.

Proof: It is an easy exercise to verify that every congruence kernel satisfies the
conditions (D1) and (D2).

Conversely, let 1 ∈ D ⊆ A and D satisfy (D1) and (D2). Introduce a binary
relation �D on A as follows:

(A) (x, y) ∈ �D iff x • y and y • x ∈ D.

Evidently, �D is reflexive and symmetric. Suppose (x, y) ∈ �D and
(y, z) ∈ �D . Then x • y, y • x, y • z, z • y ∈ D and, applying (c) of
Theorem 1, we obtain

(B) ((x ∨ y) • z) • (x • z) = (((x • y) • y) • z) • (x • z) = 1 ∈ D.

Further, x • y ∈ D and y • z ∈ D imply by (D1)
(C) ((x • y) • y) • z ∈ D.

Applying (D1) once more for x = y, we derive

x ∈ D and x • z ∈ D imply z = (x • x) • z ∈ D.
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We use the above rule together with (B) and (C) to obtain x • z ∈ D. Anal-
ogously, one can show z • y ∈ D, i.e. (x, z) ∈ �D and �D is also transitive. It is
an easy calculation to show that (D2) together with the transitivity of �D imply
the substitution property with respect to •, i.e. �D is a congruence on A.

It follows directly by (A) that D is the kernel of �D . �

In what follows, we are going to characterize congruence kernels as the so-
called ideals. Let A = (A; •, 1) be an implication orthoalgebra. A subset I ⊆ A

is called an ideal of A whenever there exists a congruence � on A such that I

is the kernel of �. It is clear that each congruence � determines its kernel [1]�.
However, also the converse statement is true by Theorem 3.

This result motivates us to describe ideals of implication orthoalgebras since
every ideal determines just one congruence and every congruence is determined
by an ideal.

For this, introduce the following concept adapted from Ursini (1972): a term
t(x1, . . . , xn, y1, . . . , ym) is called an ideal term of A = (A; •, 1) in y1, . . . , ym

whenever t(x1, . . . , xn, 1, . . . , 1) = 1 is an identity in A.

Lemma 1. Let t(x1, . . . , xn, y1, . . . , ym) be an ideal term in y1, . . . , ym of an
implication orthoalgebra A = (A; •, 1) and I be an ideal of A. If a1, . . . , an ∈ A

and b1, . . . , bm ∈ I then t(a1, . . . , an, b1, . . . , bm) ∈ I .

Proof: Let I be an ideal of A. Then there exists a congruence � on A with
I = [1]�. Assume further a1, . . . , an ∈ A and b1, . . . , bm ∈ I . Then 〈bi, 1〉 ∈ �

for i = 1, . . . , m and hence

〈t(a1, . . . , an, b1, . . . , bm), 1〉
= 〈t(a1, . . . , an, b1, . . . , bm), t(a1, . . . , an, 1, . . . , 1)〉 ∈ �

thus t(a1, . . . , an, b1, . . . , bm) ∈ [1]� = I . �

In other words, every ideal I of A is closed under each ideal term of A. Our
goal is to show the crucial result, namely to prove that I is an ideal of A iff I

is closed with respect to a finite number of ideal terms which will be explicitly
exhibited. Since every congruence kernel is closed with respect to substitutions
(D1), (D2) as shown in Theorem 4, we need only to set up these terms and to
verify that I satisfies (D1), (D2) whenever it is closed with respect to them (the
converse follows by Lemma 1).

Lemma 2. Let I be a non-void subset of an implication orthoalgebra A closed
under the following ideal terms of A:

t1(x, y) = x • y
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t2(x1, x2, y1, y2) = (x1 • x2) • [y2 • ((y1 • x1) • x2)]

t6(x, y1, y2) = (y1 • (y2 • x)) • x.

Then I satisfies the implication (D1).

Proof: At first we we show that I satisfies the property

(1) a ∈ I and a • b ∈ I ⇒ b ∈ I .
Indeed, putting y1 := a • b, y2 := a, x := b in the term t6 we get

t6(b, a • b, a) = [(a • b) • (a • b)] • b = 1 • b = b ∈ I

and (1) is proved.
Assume x, y • z ∈ I . Since x ∈ I , the closedness of I under t1 gives

us
(2) t1(y • x, x) = (y • x) • x = (x • y) • y ∈ I .

Analogously, taking x1 := y, x2 := z, y1 := x, y2 := (x • y) • y in
t2 we obtain

(3) t2(y, z, x, (x • y) • y) = (y • z) • [((x • y) • y) • ((x • y) • z)] ∈ I .
Further, y • z ∈ I , hence applying (1) for a := y • z and b :=

((x • y) • y) • ((x • y) • z), we get

((x • y) • y) • ((x • y) • z) ∈ I.

Finally, using (1) again for a := (x • y) • y and b := (x • y) • z gives us (x • y) •
z ∈ I , finishing the proof. �

To guarantee the closedness of a given subset I under the remaining property
(D2), we need the following two lemmas:

Lemma 3. Let I be a non-void subset of an implication orthoalgebra A closed
under the ideal terms t6 and

t3(x1, x2, y) = (x1 • x2) • (x1 • (y • x2));

t4(x1, x2, x3, y) = [(x1 • x2) • (x1 • (y • x3))] • ((x1 • x2) • (x1 • x3)).

Then I has the property

x • y ∈ I and y • x ∈ I ⇒ (z • x) • (z • y) ∈ I.

Proof: Assume x • y, y • x ∈ I for some x, y ∈ A. Using t3 for x1 := z, x2 :=
x, y := y • x we obtain

(4) t3(z, x, y • x) = (z • x) • [z • ((y • x) • x)] ∈ I.

Substituting x1 := z, x2 := x, x3 := y, y := x • y in t4, we obtain
(5) t4(z, x, y, x • y) = [(z • x) • (z • ((x • y) • y)] • ((z • x) • (z • y)) ∈ I.
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The closedness of I under t6 guarantees by Lemma 2 that (1) holds for I ,
hence (4), (5) and (b) of Theorem 1 yield

(z • x) • (z • y) ∈ I,

and we are done. �

Lemma 4. Let I be a non-void subset of an implication orthoalgebra A closed
under the ideal terms t2, t6 and t5(x1, x2, x3, y) = [(x1 • x2) • ((y • x3) • x2)] •
((x1 • x2) • (x3 • x2)).
Then I has the property

x • y ∈ I and y • x ∈ I ⇒ (x • z) • (y • z) ∈ I.

Proof: The closedness of I under t2 immediately yields by putting y2 := 1 also
the closedness under

t ′(x1, x2, y) = (x1 • x2) • ((y • x1) • x2).

Let us substitute x1 := x, x2 := z, y := y • x in t ′. This gives us

(x • z) • (((y • x) • x) • z) ∈ I.

Moreover, (y • x) • x = (x • y) • y, hence also

(6) (x • z) • (((x • y) • y) • z) ∈ I.

Now, considering t5 for instances x1 := x, x2 := z, x3 := y, y :=
x • y, we have

(7) [(x • z) • (((x • y) • y) • z)] • ((x • z) • (y • z)) ∈ I .

The closedness of I under t6 gives us by Lemma 2 that I satisfies the property
(1). This together with (6) and (7) leads to

(x • z) • (y • z) ∈ I. �

Applying the previous lemmas, we obtain the desired description of ideals in
implication orthoalgebras:

Theorem 5. Let I be a non-void subset of an implication orthoalgebra A. Then
I is an ideal of A iff I is closed with respect to the ideal terms t1, t2, t3, t4, t5, t6.
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Dorminger, D., Länger, H., and Maczyński, M. (2000). Lattice properties of ring-like quantum logics.
International Journal of Theoretical Physics 39, 1015–1026.

Länger, H. (1998). Generalizations of the correspondence between Boolean algebras and Boolean
rings to orthomodular lattices. Tatra Mt. Mathematical Publication 15, 97–105.
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